Wolfram Computation Meets Knowledge

Wolfram Innovator Award

Wolfram technologies have long been a major force in many areas of industry and research. Leaders in many top organizations and institutions have played a major role in using computational intelligence and pushing the boundaries of how the Wolfram technology stack is leveraged for innovation across fields and disciplines.

We recognize these deserving recipients with the Wolfram Innovator Award, which is awarded at the Wolfram Technology Conferences around the world.

2021

Bill Gosper

Mathematician and Programmer

Areas: Computer Science, Education, Software Development

Bill Gosper was part of the group at MIT that produced HAKMEM, also known as AI Memo 239, a large collection of computer and mathematical hacks, some of which are now quite famous. Stephen Wolfram refers to Bill as “Ramanujan-like” for his prolific production of mathematical results. Bill has invented several algorithms for symbolic computation, including ones for symbolic summation and continued fractions. In more recent times, Bill has been working with the next generation of amazingly bright students, producing remarkable and very surprising research results.

2021

Dr. Carol Johnstone

Senior Scientist, Particle Accelerator Corporation

Areas: Applied Mathematics, Biomedical Research, Computational Physics, Computer Science, Data Science, Mathematical Biology, Optimization, Physics

Dr. Johnstone is an internationally recognized senior accelerator physicist at Fermilab and Particle Accelerator Corporation. Her work was initially created to solve a simple set of approximate, thin lens optics equations simultaneously with geometric orbit equations. These constraint equations provided physical and field parameters that insured stable machine performance in novel accelerators for high energy physics research, such as the muon collider or Neutrino Factory. Her work evolved into a powerful new methodology for advanced accelerator design and optimization, which has since been applied to innovations in accelerators for radioisotope production, cancer therapy, security and cargo scanning, radiopharmaceuticals and green energy production. Dr. Johnstone’s efforts have resulted in the creation of a now-patented design for a non-scaling fixed-field gradient accelerator. Her work has also helped lead to the now-under-construction National Center for Particle Beam Therapy and Research in Texas, which will be the most advanced cancer therapy center in the US.

2020

Pedro Paulo Balbi de Oliveira

Universidade Presbiteriana Mackenzie

Areas: Complex Systems, Computer Science, Education, Electrical Engineering, Software Development

Pedro Paulo Balbi de Oliveira is a professor at Brazil’s Mackenzie Presbyterian University who has made extensive use of Mathematica in his research on cellular automata and evolutionary computation. This has led to the continuous development of a cellular automata toolbox, which spun off a cellular multi-agent research system and a package to represent families of cellular automata. As a whole, these efforts have provided the core computational basis for the publication of over 80 research papers and for about 50 postgraduate and undergraduate student degrees.

2020

Greg Hurst

United Therapeutics Corporation

Areas: 3D Printing, Biomedical Research, Computer Science, Materials Science, Software Development

Greg Hurst is a mathematician and software developer who has used Wolfram technology heavily throughout his educational and professional career. He recently used the Wolfram Language to create novel algorithms for designing an artificial human lung that can be 3D printed using biocompatible materials such as collagen. Greg is constantly evangelizing Wolfram technology to his colleagues at United Therapeutics Corporation and elsewhere.

2019

Dr. Joo-Haeng Lee

Senior Research Scientist, Electronics and Telecommunications Research Institute

Areas: Computer Graphics and Visual Arts, Computer Science, Machine Learning

Dr. Joo-Haeng Lee is a researcher specializing in human-machine interaction, robotics and computational art. He has used Mathematica to develop several unique geometric algorithms for camera calibration and Bézier curves/surfaces. Most recently, he utilized the Wolfram Language to develop PixelSwap, an algorithm for pixel-based color transition that can be used for both aesthetic images and synthetic learning sets for deep learning. Dr. Lee regularly uses Mathematica visualization for technical illustrations and his artworks for exhibitions.

2015

Phil Maymin

Assistant Professor of Finance and Risk Engineering, NYU Tandon School of Engineering

Areas: Applied Mathematics, Computer Science, Finance

Dr. Philip Z. Maymin recently joined Vantage Sports as their Chief Analytics Officer, in which role he helps oversee and create machine learning algorithms, novel visualizations, live interactive tools, backtests, and other robust automated insights from the Vantage dataset. He developed the automated general manager, a suite of CDFs that includes draft projections, trade evaluations, and free agent rankings. It allows users to backtest a systematic strategy and compare it with a team’s actual performance using Mathematica’s machine learning algorithms and performance data. Maymin’s next project is to launch the Analytics Institute of the University of Bridgeport School of Business, with the Wolfram Language as the program’s cornerstone.

2014

Prof. Richard J. Gaylord

University of Illinois

Areas: Authoring and Publishing, Authoring in Mathematica, Biology, Computer Science, Computer-Aided Education, Education, Physics

Richard Gaylord is one of Mathematica’s earliest users and is a self-described evangelist for the Wolfram Language. He taught computer programming in the Wolfram Language at many universities, companies, government agencies, and scientific conferences for more than 25 years. He has co-authored several texts, including An Introduction to Programming with Mathematica, and three other books on programming computer simulations in a wide variety of fields using the Wolfram Language. Gaylord has made a three-part video explaining the fundamentals of the Wolfram Language.

2014

Yves Papegay

French National Institute for Research in Computer Science and Control

Areas: Authoring and Publishing, Computer Science, Education, Mathematics

Yves Papegay integrates new Wolfram technologies into his workflow and has used Wolfram Development Platform (formerly Wolfram Programming Cloud) and Mathematica on Raspberry Pi for his robotics projects. Papegay is also a Wolfram certified instructor and develops industrial Mathematica tools for C code generation in the aerospace and energy industries for companies including Airbus and French energy company, EDF.

2013

Grigory Fridman

Saint Petersburg State University of Economics

Areas: Computer Science, Education, Finance, Mathematics, Risk

Grigory Fridman is Head of the Department of Economical Cybernetics and Mathematical Methods for Economics at Saint Petersburg State University of Economics in Saint Petersburg, Russia. With his help StPSUE became the first university in Russia to offer access to Mathematica to all faculty and students.

2012

Dr. Ryohei Miyadera

Kwansei Gakuin High School

Areas: Computer Science, Education, Mathematics

Dr. Ryohei Miyadera wants his Kwansei Gakuin High School students to love mathematics and encourages them to perform advanced research in non-traditional ways. He teaches his students to use Mathematica to examine and realize their ideas even if they don’t yet know the high-level mathematics at work. Dr. Miyadera thinks Mathematica enables young people to enjoy mathematics because they aren’t focused on the calculation, but instead on the underlying concepts. A recent example of his students’ work in Mathematica made them finalists for the Asia region in the Google Science Fair 2012 competition. Feedback from his students and successes like this support Dr. Miyadera’s approach to teaching.

See Ryohei Miyadera's Mathematica Demonstrations »

2011

Dana Scott

Carnegie Mellon University

Areas: Computer Science, Mathematics

Dana Scott was an early user of Wolfram technologies in teaching, including developing a Mathematica-based course in projective geometry. The co-inventor of nondeterministic finite automata, winner of the 1976 ACM Turing Award, and founder of domain theory, he continues to employ new Mathematica functionality in innovative ways, for example by using SatisfiabilityInstances to find tilings of pentominoes.

All Recipients:

By Year:

By Area of Interest:

See More